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Abstract

In this paper, the application of comparative measurements in isoperibol calorimetry have been presented. The limitations of the

applied mathematical models for calculation of heat effects have been given. # 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

More then 60 years ago the International Confer-

ences of Chemistry [1±4] subdivided the physico-

chemical measurements into two groups, absolute

and comparative. The main principle of comparative

measurements is the identity of conditions during the

measurements and the system calibration.In calorime-

try, the method of comparative measurements may

involve [5]

1. the use of twin calorimeters and compensation of

the heat developed in one calorimeter by electric

energy introduced into the other;

2. elimination of external temperature disturbances

using differential calorimeters, where the heat

generated is determined based on measured

temperature difference between two calorimeters;

3. the use of two successive measurements to

reproduce the heat effect by electrical energy and

4. comparison of the heat liberated by a standard

thermochemical material.

This paper will discuss some uses and misuses of

comparative measurements in isoperibol calorimeters

where the calorimetric vessel has surroundings at

constant temperature. Mathematical models of isoper-

ibol calorimeters will be developed.

In general, the heat processes that occur in a system

are described by the Fourier±Kirchhoff equation

coupled with the Navier±Stokes equation and the ¯ux

continuity equation to account for mass transport.

Calorimetric models are developed on the basis of a

simpli®ed Fourier equation with a set of parameters

limited to those considered to be of prime importance.

The choice of the model is important for an accurate

determination of heat effect.

Comparative measurements can help one obtain

more accurate results only within the framework of

an accepted model of the calorimeter. Thus, it is useful

to analyse the assumptions and limitations of the

models and methods of measurements applied in

calorimetry.
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2. Heat balance equation of a simple body

Let us assume that the heat effect dQ involved in the

calorimetric vessel is partly accumulated in the vessel

and partly transferred to the isothermal shield.

According to the Newton equation, the amount of

heat dQ2 transferred from the calorimetric vessel to

the isothermal shield is:

dQ2 � aSy�t� dt (1)

where a is the heat exchange coef®cient for the surface

S of the calorimeter vessel per unit time when the

temperature difference between the external surface of

the calorimeter vessel and isothermal shield is equal to

18 and where y(t) characterises the change in tem-

perature y of the calorimeter vessel within time t. The

amount of heat dQ1 accumulated in the vessel is:

dQ1 � Cy�t� (2)

where C is the heat capacity. The heat effect involved

in the calorimeter vessel is:

dQ � dQ1 � dQ2 � Cy�t� � aSy�t�dt (3)

or

W�t� � dQ

dt
� dQ1

dt
� dQ2

dt
� C

dy�t�
dt
� aSy�t�dt

(4)

According to Eq. (4), a physical system described by

this type of equation is characterised by inertial prop-

erties of the ®rst order. This is easily recognised,

because upon dividing both sides of Eq. (4) by G�aS

and setting

t � K

G
and f �t� � 1

G
W�t�

we arrive at:

t
dy�t�

dt
� y�t� � f �t� (5)

which indicates that the time constant t establishes the

course of the heat ¯ow. If a Laplace transformation is

applied to Eq. (5), the transmittance is:

H�s� � y�s�
Q�s� �

1

ts� 1
(6)

where y(s) and Q(s) denote the transforms of the

functions y(t) and Q(t), respectively, and the resulting

quotient represents the transmittance H(s). This func-

tion is expressed by the operator 1/(ts�1), which

characterises the properties of the calorimeter as those

of a ®rst-order inertial object. The time constant t is

the parameter that describes the inertial properties of

the object. This also means that the value of the time

constant determines whether experimental conditions

approach more closely isothermal or adiabatic, and the

resulting observed temperature follows the course of

the function Q(t), which corresponds to the power of

the transformation investigated.

The common application of this model, based of the

heat balance equation of a simple body, in isoperibol

calorimetry is generally familiar. Eq. (4) is a basis for

determination of the heat involved in Calvet micro-

calorimeters [6] and is known as the Tian±Calvet

equation. It is the basis of the static±dynamic method

of Swietoslawski and Salcewicz [5]. Most corrections

applied to an ordinary calorimeter, for example the

Regnault±Pfaundler correction [7,8], are based on this

model. The integral of Eq. (4) is described by:

DQ � CDy � �Dyc � Dyp� (7)

where C is the heat capacity; CDy�DQ corresponds to

the amount of heat generated in the calorimeter; Dyc

the change in the calorimeter temperature; Dyp a `tem-

perature correction' which corresponds to the integralZ t2

t1

yc�t� dt (8)

which can be determined on the basis of the Regnault±

Pfaundler correction.

The model is also used for calculation of the total

heat effect and thermokinetics W(t) in conduction

calorimeters. When the values of temperature initially

and ®nally for an experiment are equal the integral of

the second term of Eq. (4) is determined. Additionally,

assuming that the ®rst term of the right side of Eq. (4)

can be neglected, W(t) is expressed by the second term

of the right side of this equation and W(t) corresponds

to the course of y(t) with accuracy up to the factor G.

The applications of the model of a simple body to

isoperibol calorimetry make it necessary to consider

the conditions in which this model is valid [8]. Let us

transform the Fourier±Kirchhoff equation

Cpr
@T

@t
� w grad T

� �
ÿ @p

@t
� w grad p

� �
� Div �grad T� � g (9)
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into the heat balance equation of a simple body in

order to indicate the simpli®cations and limitations

assumed in the de®nition of Eq. (4).

Let us assume that heat processes take place in

isobaric conditions p�const (dp/dt�0 and grad p�0),

without mass exchange, and the thermal parameters,

namely Cp the heat capacity, r the density, G the heat

loss coef®cient and V the volume, are constants. Then,

Eq. (9) can be written as:

Cpr
@T

@t
� Div�l grad T� ÿ Cpr grad T � g

(10)

where T is the temperature, and g the density of inner

heat sources (amount of heat developed per unit

volume in unit time). Integrating the particular terms

of Eq. (10) with respect to volume V of a body of

external surface S we obtain:Z Z
V

Z
Cpr

@T

@t
� CprV

@T

@t
V (11)Z Z

V

Z
��grad T� dV � ÿG�Ts ÿ T0� (12)Z Z

V

Z
Cpw grad TdV � wCprV

dTV

dt
(13)

Z Z
V

Z
g dv � dQ�t�

dt
� W�t� (14)

where Tv is the average temperature of the calorimeter

vessel of total volume V, Ts the average temperature of

the external surface S of the calorimeter vessel, T0 the

temperature of the isothermal shield and w a velocity

vector. Assuming additionally that w�0, and Tv�Ts

and TÿT0�y, Eq. (10) becomes:

CprV
dy�t�

dt
� Gy�t� � W�t� (15)

which is equivalent to Eq. (4).

The heat balance equation of a simple body (Eq.

(4)) and the Fourier±Kirchhoff Eq. (10) are identical,

when:

1. temperature in the total volume is homogenous

and a function of time only;

2. temperature on the whole surface is homogenous

and a function of time only;

3. the above temperatures are equal, and are the same

at all times; and

4. the heat capacity C and heat loss coef®cient G are

constant and are not functions of time or

temperature.

These conditions can be met in all calorimetric

measurements, including calibration and determina-

tion of heat effects. As was mentioned before, the

main principle of comparative measurements is the

identity of the conditions during the measurements

and calibration. Applying this model, it is assumed

that G and C are the same in all the measurements and

that temperature gradients do not occur. To preserve

these conditions in real calorimeters is enormously

dif®cult.

3. Differential and twin calorimeters

Differential isoperibol calorimeters have found a

wide range of applications. Such calorimeters consist

of two calorimeters (I and II) placed in common

shield. One vessel contains localised heat source

and the other Ð thermally passive. It is assumed that

the static and dynamic properties of both the calori-

meters are identical. The course of temperature

changes of calorimeter I, in which the heat effect is

generated, is based on the measured temperature

difference between calorimeters I and II. It is assumed

that the in¯uence of external disturbances is the same

in both the calorimeters and that temperature differ-

ence measurements enable us to eliminate these dis-

turbances. From a consideration of the dynamic

properties of differential calorimetric systems it is

clear that the in¯uence of disturbances can be elimi-

nated only when transmittances of calorimeters I and

II are the same. This means that time constants and

heat loss coef®cients should be equal. It is very hard to

ful®ll this condition from the principle of comparative

measurements. Because of this it is useful to deter-

mine, for a given differential calorimeter, an accep-

table range of difference of time constants of

calorimeters I and II for which, for a given distur-

bance, the required accuracy of y(t) measurement is

ful®lled [8].

Another type of calorimetric system is called twin

calorimeters. In these devices, it is necessary to obtain

equal temperatures of the inner parts of calorimeters I

and II in such a way that a heat effect of the same
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magnitude and course is generated in calorimeters I

and II. It is obvious that, for twin calorimetric systems,

as in differential calorimetric systems, the dynamic

properties of both the calorimeters should be the same.

4. Invariance of the transmittance of the
calorimeter

There exist a number of methods based on the

`black box' notion to determine the thermokinetics

W(t) [9,10] (e.g. dynamic optimisation, harmonic

analysis, state variables, numerical correction), where

a consideration of the physical parameters of the

system is abandoned, and the dependence between

the heat effect Q(t) corresponding to changes in

temperature y in time t is searched for. If the results

of calibration Q(t) and y(t) are known, the transfer

function of the calorimeter, which represents the

dynamic properties of the system, can be found. It

is possible to evaluate the course of unknown heat

effects on the basis of the changes of the temperature

y(t) in the transmittance of the calorimeter during

calibration and measurement are the same. For exam-

ple, a change in the calorimetric vessel contents, and

thus its heat capacity, can cause errors in the determi-

nation of the heat effect.

5. Mutual localisation of heat sources and the
temperature sensor in proper calorimeter vessel

In the investigations on heat of combustion at the

US National Bureau of Standards, it was stated [11,12]

that the calculated heat capacity of the calorimetric

bomb as the sum of heat capacities of the particular

parts of the calorimeter was not equal to the experi-

mentally determined heat capacity of the system. This

phenomenon cannot be explained when using an

equation for a simple body. King and Grover [11]

replaced that model with a two-body model which can

be described by the following differential equations:

C1
dy1�t�

dt
�G01y1�t��G12�y1�t�ÿy2�t���W1�t�

(16)

C2
dy2�t�

dt
� G12�y2�t� ÿ y1�t�� � W2�t� (17)

where C1, C2 are heat capacities of the two bodies; G01

the heat loss coef®cient between the outer body and

the environment; G12 the heat loss coef®cient between

the two bodies; W1(t), W2(t) the heat powers generated

in the two distinguished bodies and y1(t), y2(t) the

temperatures of these bodies.

It was shown [11,12] that, for this model, the energy

equivalent of the system depends on the values of heat

capacities C1, C2 of distinguished bodies as well as on

the value of heat loss coef®cient between these bodies.

Margas and Zielenkiewicz [13] analysed this two-

body model and demonstrated that two cases can be

given when the energy equivalent corresponds to the

sum of the heat capacities of the parts of the calori-

meter. This takes place, when the no heat exchange

between the calorimeter and shield occurs and when

intensive heat exchange between the distinguished

bodies occurs.

The detailed considerations of the models of two

and three bodies of different con®gurations demon-

strated [8,14±17] that transfer functions of the system

also depend on the mutual localisation of heat sources

and temperature sensors as well as on the values of heat

loss coef®cients between the bodies. This suggests

that during the calibration the determination of heat

effects and the localisation of the temperature sensor

with respect to the heat source must be guaranteed.

6. The multi-body model

The real calorimeter is composed of many parts. To

describe the¯owofheat insuchasystem, themulti-body

model of the calorimeter was elaborated [8,17,18].

The basic postulates of the multi-body model are as

follows: Each of the separate bodies has a uniform

temperature over its entire volume, the temperature is

a function of time t only, and the heat capacity of the

body is constant. Temperature gradients appear only in

the media separating the bodies, and the heat capa-

cities of these media are, by assumption, negligibly

small. The amount of heat exchanged between bodies

through these media is proportional to the difference

in the temperatures of the bodies; the proportionality

constants are the appropriate heat loss coef®cients.

Furthermore, a heat source or a temperature sensor

may be positioned in any of the bodies. The system of

bodies is placed in a medium with a constant tem-
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perature. The generalised heat balance equation

derived with these assumptions is

Cjdyj�t� � G0jyj�t� dt �
XN

j�1
j 6�1

Gij�yj�t� ÿ yi�t� dt

� dQj�t�; j � 1; 2; . . . ;N (18)

where N is the number of bodies, Cj the heat

capacity of body j, G0j the coef®cient of heat loss

between body j and the environment, Gij the coef®-

cient of heat loss between bodies i and j, yj(t) describes

the variation in time of the temperature of body j in

relation to the ambient temperature which is constant,

dQj(t) the amount of heat evolved in time dt in body j;

Cjdyj(t) the amount of heat accumulated in body j in

time dt; G0jyj(t)dt the amount of heat exchanged

between body j and the environment in time dt and

Gij[yj(t)ÿyi(t)]dt the amount of heat exchanged

between bodies j and i in time dt.

The particular form of these equations for a calori-

metric system depends on the number of distinguished

bodies, on the heat interactions between those bodies,

and on mutual localisation of heat sources and tem-

perature sensors. The determination of the particular

form of these equations is equivalent to the determi-

nation of the transmittance of the calorimetric system.

It is necessary to describe the heat capacities, Cp, of

the bodies and characterise the heat interactions

between these bodies by heat loss coef®cients, Gij,

and also heat interactions between these bodies and

the environment by heat loss coef®cients, G0j. The

values of coef®cients Gij, Gj0 and heat capacities, Cj

are determined from a knowledge of physical para-

meters of the calorimetric system (e.g, thermal con-

ductivity, volume speci®c heat). Thus, the values of

the transmittance of the system can be determined.

The transmittance of the system is accepted when

optimisation and stability conditions of numerical

solution are ful®lled [19,21]. If any of the time con-

stants of the calorimetric system does not satisfy the

stability condition, then a new model of the system

must be devised to decrease the number of time

constants which satisfy the stability condition. Next,

the temperature is compared with the experimental

response. If the result is consistent, we can accept the

elaborated model. This method was used with success

to identify existing calorimetric devices [20,22]. Such

a model of calorimeters makes it easy to determine the

total heat effect and thermokinetics of the process

studied. Let us determine a domain (domains) whose

heat capacity corresponds to the heat capacity of the

substance examined (or substance and calorimetric

vessel). Then Eq. (18) takes the form

Cj

dyi�t�
dt
� Giyi�t� ÿ

XN

j�1
j 6�1

Gijyj�t� � Wi�t�;

j � 1; 2; . . . ; pÿ 1; p� 1; . . . ;N (19a)

Cp

dyp�t�
dt
� Gpyp�t� ÿ

XN

j�1
j6�p

Gpjyj�t� � Wp�t�

(19b)

Eq. (19b) describes the so-called `changeable' part of

the calorimetric system. The remaining part of the

calorimetric system described by Eq. (19a) corre-

sponds to an `empty' calorimeter. This part can be

called the `non-changeable part' of the calorimetric

system. The method of calculation of heat effects

permits elimination of the effect of changing the

dynamic properties of a calorimetric system, e.g. in

titration calorimeters in which each injection of liquid

changes Cp of calorimetric vessel.
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